Discrete Mathematics

Lecture 06

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence

Benha University

Spring 2023

Thanks!

Chapter 5: Induction and Recursion

```
كلية الحاسبات والذكاء الإصطناعي
```

- Mathematical Induction.
- Recursive Definitions.

Infinite ladder

Infinite ladder

1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can reach the next rung.

Mathematical Induction (1/10)

```
كلية الحاسبات والذكاء الإصطناعي
```


Infinite ladder

1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can reach the next rung.

Therefore, we are able to reach every rung of this infinite ladder

Mathematical Induction (1/10)

Infinite ladder

1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can reach the next rung.

Therefore, we are able to reach every rung of this infinite ladder

Using proof technique called mathematical induction

Mathematical Induction (1/10)

Mathematical Induction (2/10)

Mathematical Induction definition:

Mathemaical induction can be used to prove statments that assert that $P(n)$ is true for all positive integers n, where $P(n)$ is a propositional function.

Mathematical Induction (3/10)

Principle of Mathematical Induction (1/4)

To prove that $P(n)$ is true for all positive integers n, where $P(n)$ is a propositional function,
we complete two steps:

Basis Step

We verify that $P(1)$ is true.

Inductive Step

We show that the conditional statment
$P(k) \rightarrow P(k+1)$ is true for all positive integers k.

Mathematical Induction (3/10)

Principle of Mathematical Induction (2/4)

To complete the inductive step of a proof using the principle of mathematical induction, we assume that $P(k)$ is true for an arbitrary positive integer k and show that under this assumption, $P(k+1)$ must also be true. The assumption that $P(k)$ is true is called the inductive hypothesis (IH).

Mathematical Induction (3/10)

Principle of Mathematical Induction (2/4)

To complete the inductive step of a proof using the principle of mathematical induction, we assume that $P(k)$ is true for an arbitrary positive integer k and show that under this assumption, $P(k+1)$ must also be true. The assumption that $P(k)$ is true is called the inductive hypothesis (IIH).

$$
\forall k(P(k) \rightarrow P(k+1))
$$

Mathematical Induction (3/10)

Principle of Mathematical Induction (3/4)

To complete the inductive step of a proof using the principle of mathematical induction, we assume that $P(k)$ is true for an arbitrary positive integer k and show that under this assumption, $P(k+1)$ must also be true. The assumption that $P(k)$ is true is called the inductive hypothesis (IH).

$$
\forall k(P(k) \rightarrow P(k+1))
$$

Remark: In a proof by mathematical induction, it is not assumed that $P(k)$ is true for all positive integers! It is only shown that if it is assumed that $P(k)$ is true, then $P(k+1)$ is also true.

Mathematical Induction (3/10)

Principle of Mathematical Induction (4/4)

Expressed as a rule of inference, this proof technique can be stated as:
$[P(1) \wedge \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall n P(n)$
when the domain is the set of positive integers.

Remark: In a proof by mathematical induction, for basis step, we not always start at the integer 1 . In such a case, the basis step begins at a starting point b where b is an integer.

Mathematical Induction (4/10)

Mathematical Induction (5/10)

Notes for Proofs by Mathematical Induction (1/3)

- Express the statement that is to be proved in the form "for all $n \geq b, P(n)$ " for a fixed integer b.
\checkmark for all positive integers n, let $b=1$, and
\checkmark for all nonnegative integers n, let $b=0$, and so on \ldots
- Write out the words "Basis Step." Then show that $P(b)$ is true.
- Write out the words "Inductive Step" and state, and clearly identify, the inductive hypothesis, in the form "Assume that $P(k)$ is true for an arbitrary fixed integer $k \geq b$."

Mathematical Induction (5/10)

Notes for Proofs by Mathematical Induction (2/3)

- State what needs to be proved under the assumption that the inductive hypothesis (IH) is true.
\checkmark That is, write out what $P(k+1)$ says.
- Show that $P(k+1)$ is true under the assumption that $P(k)$ is true.
\checkmark The most difficult part of a mathematical induction proof.
\checkmark This completes the inductive step.

Mathematical Induction (5/10)

```
كلية الحاسبات والذكاء الإصطناعي
```


Notes for Proofs by Mathematical Induction (3/3)

- After completing the basis step and the inductive step, state the conclusion, namely, "By mathematical induction, $P(n)$ is true for all integers n with $n \geq b$ ".

Mathematical Induction (6/10)

Example 1:

Use mathematical induction to prove that

$$
\sum_{i=1}^{n} i=1+2+3 \cdots+n=\frac{n(n+1)}{2}
$$

For all positive integers n. (i.e., $n \geq 1$)

Mathematical Induction (6/10)

Example 1 - Answer (1/4):

Let $P(n)$ be the proposition that

$$
1+2+3 \cdots+n=\frac{n(n+1)}{2}
$$

1) Basis Step:

If $\boldsymbol{n}=1 . P(1)$ is true, because $1=\frac{(1)(2)}{2}$
This completes the basis step.

2) Inductive Step:

We first Assume that (Inductive Hypothesis (IH)) $P(k)$ is true for the positive integer k, i.e.: $P(k)$

$$
" 1+2+3 \cdots+k=\frac{k(k+1)}{2} " .
$$

Mathematical Induction (6/10)

$$
P(k) \quad " 1+2+3 \cdots+k=\frac{k(k+1)}{2} " .
$$

We need to show that if $P(k)$ is true, then $P(k+1)$ is true.
i. e., we need to show that $P(k+1)$ is also true.

$$
1+2+3 \cdots+k+(k+1)=\frac{(k+1)[(k+1)+1]}{2}=\frac{(k+1)(k+2)}{2}
$$

Mathematical Induction (6/10)

كلية الحاسبات والذكاء الإصطناعي

Example 1 - Answer (3/4):

$$
\begin{aligned}
& P(k) \\
& " 1+2+3 \cdots+k=\frac{k(k+1)}{2} " .
\end{aligned}
$$

We add $(\boldsymbol{k}+\mathbf{1})$ to both sides of the equation in $P(k)$, we obtain

$$
\begin{aligned}
1+2+3 \cdots+k+(k+1) & \stackrel{\text { IH }}{=} \frac{k(k+1)}{2}+(k+1) \\
= & \frac{k(k+1)+2(k+1)}{2} \\
= & \frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Mathematical Induction (6/10)

Example 1 - Answer (3/4):

$$
\begin{aligned}
& P(k) \\
& " 1+2+3 \cdots+k=\frac{k(k+1)}{2} \text { ". }
\end{aligned}
$$

We add $(\boldsymbol{k}+\mathbf{1})$ to both sides of the equation in $P(k)$, we obtain

$$
\begin{aligned}
1+2+3 \cdots+k+(k+1) & \stackrel{I H}{=} \frac{k(k+1)}{2}+(k+1) \\
= & \frac{k(k+1)+2(k+1)}{2} \\
= & \frac{(k+1)(k+2)}{2}
\end{aligned}
$$

- This equation show that $P(k+1)$ is true under the assumption that $P(k)$ is true.
- This completes the inductive step.

Mathematical Induction (6/10)

Example 1 - Answer (4/4):

So, by mathematical induction we know that $P(n)$ is true for all positive integers n.

That is, we proven that

$$
1+2+3 \cdots+n=\frac{n(n+1)}{2}
$$

for all positive integers n.

Mathematical Induction (7/10)

Example 2:

Use mathematical induction to prove that

$$
\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2} \cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

For all positive integers n. (i.e., $n \geq 1$)

Mathematical Induction (7/10)

Example 2 - Answer (1/4):

Let $P(n)$ be the proposition that

$$
1^{2}+2^{2}+3^{2} \cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

1) Basis Step:

If $\boldsymbol{n}=1 . P(1)$ is true, because $1^{2}=1=\frac{(1)(2)(3)}{6}$
This completes the basis step.

2) Inductive Step:

We first Assume that (Inductive Hypothesis (IH)) $P(k)$ is true for the positive integer k, i.e.: $P(k)$

$$
" 1^{2}+2^{2}+3^{2} \cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6} "
$$

Mathematical Induction (7/10)

$$
\text { Example } 2 \text { - Answer (2/4): } \quad \begin{aligned}
& P(k) \\
& " 1^{2}+2^{2}+3^{2} \cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
\end{aligned} .
$$

We need to show that if $P(k)$ is true, then $P(k+1)$ is true.
i. e. : we need to show that $P(k+1)$ is also true.

$$
\begin{gathered}
1^{2}+2^{2}+3^{2} \cdots+k^{2}+(k+1)^{2}=\frac{(k+1)[(k+1)+1][2(k+1)+1]}{6} \\
1^{2}+2^{2}+3^{2} \cdots+k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
\end{gathered}
$$

Mathematical Induction (7/10)

Example 2 - Answer (3/4):

$$
\begin{aligned}
& P(k) \\
& " 1^{2}+2^{2}+3^{2} \cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6} " .
\end{aligned}
$$

We add $(\boldsymbol{k}+\mathbf{1})^{2}$ to both sides of the equation in $P(k)$, we obtain

$$
\begin{aligned}
1^{2}+2^{2}+3^{2} \cdots+k^{2}+ & (k+1)^{2} \stackrel{\mathrm{IH}}{=} \frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \\
& =\frac{(k+1)(k(2 k+1)+6(k+1))}{6}
\end{aligned}
$$

Mathematical Induction (7/10)

Example 2 - Answer (3/4): \quad| $P(k)$ |
| :--- |
| $" 1^{2}+2^{2}+3^{2} \cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}$ |.

We add $(\boldsymbol{k}+\mathbf{1})^{\mathbf{2}}$ to both sides of the equation in $P(k)$, we obtain

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2} \cdots+k^{2}+(k+1)^{2} \stackrel{\text { IH }}{=} \frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
&= \frac{(k+1)(k(2 k+1)+6(k+1))}{6} \\
&=\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
&=\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

- This equation show that $P(k+1)$ is true under the assumption that $P(k)$ is true.
- This completes the inductive step.

Mathematical Induction (7/10)

Example 2 - Answer (4/4):

So, by mathematical induction we know that $P(n)$ is true for all positive integers n.

That is, we proven that

$$
1^{2}+2^{2}+3^{2} \cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

for all positive integers n.

Mathematical Induction (8/10)

Example 3:

Use mathematical induction to prove that

$$
n<2^{n}
$$

For all positive integers n. (i.e., $n \geq 1$)

Mathematical Induction (8/10)

Example 3 - Answer (1/4):

Let $P(n)$ be the proposition that

$$
n<2^{n}
$$

1) Basis Step:

If $\boldsymbol{n}=1 . P(1)$ is true, because $1<2^{1}$
This completes the basis step.
2) Inductive Step:

We first Assume that (Inductive Hypothesis (IH)) $P(k)$ is true for the positive integer k, i.e.: $P(k)$

$$
k<2^{k}
$$

Mathematical Induction (8/10)

Example 3 - Answer (2/4):

$$
P(k) \quad k<2^{k}
$$

We need to show that if $P(k)$ is true, then $P(k+1)$ is true.
i. e., we need to show that $P(k+1)$ is also true.

$$
(k+1)<2^{k+1}
$$

Mathematical Induction (8/10)

Example 3 - Answer (3/4):

$$
P(k) \quad k<2^{k}
$$

We add (1) to both sides of the equation in $P(k)$, we obtain
$(k+1) \stackrel{\mathrm{IH}}{<} 2^{k}+1$

Mathematical Induction (8/10)

Example 3 - Answer (3/4):

$$
P(k) \quad k<2^{k}
$$

We add (1) to both sides of the equation in $P(k)$, we obtain
$(k+1) \stackrel{\mathrm{IH}}{<} 2^{k}+1$

$$
\text { Because the integer } k \geq 1 \text {. Therefore, } 2^{k}>1
$$

$(k+1)<2^{k}+2^{k}$

Mathematical Induction (8/10)

Example 3 - Answer (3/4):

$$
P(k) \quad k<2^{k}
$$

We add (1) to both sides of the equation in $P(k)$, we obtain
$(k+1) \stackrel{\mathrm{IH}}{<} 2^{k}+1$
$(k+1)<2^{k}+2^{k}$
$(k+1)<2 \cdot 2^{k}$
$(k+1)<2^{k+1}$

Mathematical Induction (8/10)

Example 3 - Answer (3/4):

$$
P(k) \quad k<2^{k}
$$

We add (1) to both sides of the equation in $P(k)$, we obtain

$$
(k+1) \stackrel{\mathrm{IH}}{<} 2^{k}+1
$$

$$
(k+1)<2^{k}+2^{k}
$$

$$
(k+1)<2 \cdot 2^{k}
$$

$$
(k+1)<2^{k+1}
$$

- This equation show that $P(k+1)$ is true under the assumption that $P(k)$ is true.
- This completes the inductive step.

Mathematical Induction (8/10)

Example 3 - Answer (4/4):

So, by mathematical induction we know that $P(n)$ is true for all positive integers n.

That is, we proven that

$$
n<2^{n}
$$

for all positive integers n.

Mathematical Induction (9/10)

Example 4:

Use mathematical induction to prove that

$$
2^{n}<n!
$$

For every integer integers n with $n \geq 4$.

Mathematical Induction (9/10)

Example 4 - Answer (1/5):

Let $P(n)$ be the proposition that

$$
2^{n}<n!\quad n \geq 4
$$

1) Basis Step:

If $\boldsymbol{n}=4 . P(4)$ is true, because $\left(2^{4}=16\right)<(4!=24)$
This completes the basis step.

2) Inductive Step:

We first Assume that (Inductive Hypothesis (IH)) $P(k)$ is true for the positive integer $k \geq 4$, i. e.: $P(k)$

$$
2^{k}<k!
$$

Mathematical Induction (9/10)

Example 4 - Answer (2/5):

$$
P(k) \quad 2^{k}<k!
$$

We need to show that if $P(k)$ is true, then $P(k+1)$ is true.
i. e., we need to show that $P(k+1)$ is also true.

$$
k \geq 4
$$

$$
2^{k+1}<(k+1)!
$$

$$
2^{k+1}<(k+1)!
$$

Mathematical Induction (9/10)

كلية الحاسبات والذكاء الإصطناعي

Example 4 - Answer (3/5):

$$
P(k) \quad 2^{k}<k!
$$

$$
k \geq 4
$$

We are multiple both sides of the equation in $P(k)$ by (2), we obtain

$$
2^{k} \stackrel{\mathrm{IH}}{<} k!
$$

$$
2 \cdot 2^{k}<2 \cdot k!
$$

Mathematical Induction (9/10)

كلية الحاسبات والذكاء الإصطناعي

Example 4 - Answer (3/5):

$$
P(k) \quad 2^{k}<k!
$$

$$
k \geq 4
$$

We are multiple both sides of the equation in $P(k)$ by (2), we obtain

$$
\begin{aligned}
& 2^{k} \stackrel{\mathrm{IH}}{<} k! \\
& 2 \cdot 2^{k}<2 \cdot k! \\
& 2^{k+1}<2 \cdot k!
\end{aligned}
$$

By definition of exponent

$$
2^{k+1}=2 \cdot 2^{k}
$$

Mathematical Induction (9/10)

كلية الحاسبات والذكاء الإصطناعي

Example 4 - Answer (4/5):

$$
P(k) \quad 2^{k}<k!
$$

$$
k \geq 4
$$

We are multiple both sides of the equation in $P(k)$ by (2), we obtain
$2^{k+1}<2 \cdot k!$
Because the integer $k \geq 4$. Therefore, $2<k+1$
$2^{k+1}<(k+1) \cdot k!$

Mathematical Induction (9/10)

كلية الحاسبات والذكاء الإصطناعي

Example 4 - Answer (4/5):

$$
P(k) \quad 2^{k}<k!
$$

$$
k \geq 4
$$

We are multiple both sides of the equation in $P(k)$ by (2), we obtain

$$
2^{k+1}<2 \cdot k!
$$

$$
2^{k+1}<(k+1) \cdot k!
$$

> By definition of factorial function.

$$
2^{k+1}<(k+1)!
$$

Mathematical Induction (9/10)

Example 4 - Answer (4/5):

$$
P(k) \quad 2^{k}<k!
$$

$$
k \geq 4
$$

We are multiple both sides of the equation in $P(k)$ by (2), we obtain
$2^{k+1}<2 \cdot k!$
$2^{k+1}<(k+1) \cdot k!$
$2^{k+1}<(k+1)!$

- This equation show that $P(k+1)$ is true under the assumption that $P(k)$ is true.
- This completes the inductive step.

Mathematical Induction (9/10)

```
كلية الحاسبات والذكاء الإصطناعي
```


Example 4 - Answer (5/5):

So, by mathematical induction we know that $P(n)$ is true for all positive integers $n \geq 4$.

That is, we proven that

$$
2^{n}<n!
$$

for all positive integers $n \geq 4$.

Mathematical Induction (10/10)

Example 5:

Use mathematical induction to prove that

$$
n^{3}-n \text { is divisible by } 3
$$

For every positive integer integers n. (i.e., $n \geq 1$)

Mathematical Induction (10/10)

Example 5 - Answer (1/4):

Let $P(n)$ be the proposition that

$$
" n^{3}-n \text { is divisible by } 3 " \quad n \geq 1
$$

1) Basis Step:

If $\boldsymbol{n}=1 . P(1)$ is true, because $\left(1^{3}-1=0\right)$ is divisible by 3.
This completes the basis step.

2) Inductive Step:

We first Assume that (Inductive Hypothesis (IH)) $P(k)$ is true for the positive integer $k \geq 1$, i. e.: $P(k)$

$$
k^{3}-k \text { is divisible by } 3
$$

Mathematical Induction (10/10)

Example 5 - Answer (2/4):

```
P(k)
```

 \(k^{3}-k\) is divisible by 3
 We need to show that if $P(k)$ is true, then $P(k+1)$ is true.
i. e. , we need to show that $P(k+1)$ is also true.

$$
(k+1)^{3}-(k+1) \text { is divisible by } 3
$$

Mathematical Induction (10/10)

كلية الحاسبات والذكاء الإصطناعي

Example 5 - Answer (3/4):

$$
P(k)
$$

$$
k^{3}-k \text { is divisible by } 3
$$

Note that

$$
\begin{aligned}
(k+1)^{3}-(k+1) & =\left(k^{3}+3 k^{2}+3 k+1\right)-(k+1) \\
& =k^{3}+3 k^{2}+3 k-k \\
& =k^{3}-k+3 k^{2}+3 k \\
& =\left(k^{3}-k\right)+3\left(k^{2}+k\right)
\end{aligned}
$$

Mathematical Induction (10/10)

Example 5 - Answer (3/4):

$P(k)$

$$
k^{3}-k \text { is divisible by } 3
$$

Note that

$$
\begin{aligned}
(k+1)^{3}-(k+1) & =\left(k^{3}+3 k^{2}+3 k+1\right)-(k+1) \\
& =k^{3}+3 k^{2}+3 k-k \\
& =k^{3}-k+3 k^{2}+3 k \\
& =\left(k^{3}-k\right)+3\left(k^{2}+k\right)
\end{aligned}
$$

Using the inductive hypothesis, we conclude that the first term $k^{3}-k$ is divisible by 3

Mathematical Induction (10/10)

Example 5 - Answer (3/4):

$P(k)$

$$
k^{3}-k \text { is divisible by } 3
$$

Note that

$$
\begin{aligned}
(k+1)^{3}-(k+1) & =\left(k^{3}+3 k^{2}+3 k+1\right)-(k+1) \\
& =k^{3}+3 k^{2}+3 k-k \\
& =k^{3}-k+3 k^{2}+3 k \\
& =\left(k^{3}-k\right)+3\left(k^{2}+k\right)
\end{aligned}
$$

The second term is divisible by 3 because it is $\mathbf{3}$ times an integer.

Mathematical Induction (10/10)

Example 5 - Answer (3/4):

$P(k)$

$$
k^{3}-k \text { is divisible by } 3
$$

Note that

$$
\begin{aligned}
(k+1)^{3}-(k+1) & =\left(k^{3}+3 k^{2}+3 k+1\right)-(k+1) \\
& =k^{3}+3 k^{2}+3 k-k \\
& =k^{3}-k+3 k^{2}+3 k \\
& =\left(k^{3}-k\right)+3\left(k^{2}+k\right)
\end{aligned}
$$

- So, $(k+1)^{3}-(k+1)$ is divisible by 3
- This completes the inductive step.

Mathematical Induction (10/10)

Example 5 - Answer (4/4):

So, by mathematical induction we know that $P(n)$ is true for all positive integers $n \geq 1$.

That is, we proven that

$$
" n^{3}-n \text { is divisible by } 3 "
$$

for all positive integers $n \geq 1$.

Recursive Definitions (1/13)

Recursive Definitions (1/13)

Recursive Definitions (2/13)

Recursion:

The process of defining an object in terms of itself.

Recursively Defined Functions:

Basis Step

Specify the value of the function at the first point.

Recursive Step

Specifying how terms in the function are found from previous terms.

Recursive Definitions (3/13)

Example 1:

We use two steps to define a function with the set of nonnegative integers as its domain:

1) Basis Step:

Specify the value of the function at zero.
$f(0)=0$

2) Recursive Step:

Give a rule for finding its value at an integer from its values at smaller integers.
$f(n+1)=f(n)+1, \quad$ for integer $n \geq 0$ (i.e., nonnegative integers)

Recursive Definitions (4/13)

Example 2:

The sequence of powers of 2 is given by $a_{n}=2^{n}$ for $n=0,1,2, \ldots$

Recursive Definitions (4/13)

كلية الحاسبات والذكاء الإصطناعي

Example 2:

Explicit Formula

The sequence of powers of 2 is given by $a_{n}=2^{n}$ for $n=0,1,2, \ldots$

Recursive Definitions (4/13)

Example 2 - Answer:

Explicit Formula

The sequence of powers of 2 is given by $a_{n}=2^{n}$ for $n=0,1,2, \ldots$

1) Basis Step:

Specify the value of the sequence at zero.
$a_{0}=2^{0}=1$
2) Recursive Step:

Give a rule for finding a term of the sequence from the previous one.
$a_{n+1}=2 a_{n}, \quad$ for $n=0,1,2, \ldots$

Recursive Definitions (4/13)

Example 2 - Answer:

Explicit Formula

The sequence of powers of 2 is given by $a_{n}=2^{n}$ for $n=0,1,2, \ldots$

1) Basis Step:

Specify the value of the sequence at zero.
$a_{0}=2^{0}=1$
2) Recursive Step:

Give a rule for finding a term of the sequence from the previous one.

$$
a_{n+1}=2 a_{n}, \quad \text { for } n=0,1,2, \ldots
$$

Recursive
Formula

Recursive Definitions (5/13)

كلية الحاسبات والذكاء الإصطناعي

Example 3:

Suppose that f is defined recursively by

$$
\begin{aligned}
& f(0)=3 \\
& f(n+1)=2 f(n)+3 .
\end{aligned}
$$

Find $f(1), f(2), f(3)$, and $f(4)$.

Recursive Definitions (5/13)

Example 3 - Answer:

Suppose that f is defined recursively by

$$
\begin{aligned}
& f(0)=3 \\
& f(n+1)=2 f(n)+3
\end{aligned}
$$

Find $f(1), f(2), f(3)$, and $f(4)$.
Solution: From the recursive definition it follows that

$$
\begin{aligned}
& f(1)=2 f(0)+3=2 \cdot 3+3=9, \\
& f(2)=2 f(1)+3=2 \cdot 9+3=21, \\
& f(3)=2 f(2)+3=2 \cdot 21+3=45, \\
& f(4)=2 f(3)+3=2 \cdot 45+3=93 .
\end{aligned}
$$

Recursive Definitions (6/13)

```
كلية الحاسبات والذكاء الإصطناعي
```


Example 4:

Give a recursive definition of the factorial function n !

Recursive Definitions (6/13)

Example 4 - Answer:

Give a recursive definition of the factorial function n !

1) Basis Step:

Specify the value of the function at zero.
$f(0)=1$

2) Recursive Step:

Give a rule for finding its value at an integer from its values at smaller integers.
$f(n+1)=(n+1) \cdot f(n), \quad$ for $n=0,1,2, \ldots$

Recursive Definitions (7/13)

Example 5:

Recall from Chapter 2 that the Fibonacci numbers, $f_{0}, f_{1}, f_{2}, \ldots$, are defined by the equations $f_{0}=0, f_{1}=1$, and
$f_{n}=f_{n-1}+f_{n-2}$
Find:
f_{2}
f_{3}
f_{4}
f_{5}

Recursive Definitions (7/13)

Example 5 - Answer:

Recall from Chapter 2 that the Fibonacci numbers, $f_{0}, f_{1}, f_{2}, \ldots$, are defined by the equations $f_{0}=0, f_{1}=1$, and

$$
f_{n}=f_{n-1}+f_{n-2}
$$

Find:

$$
\begin{aligned}
& f_{2}=f_{1}+f_{0}=1+0=1 \\
& f_{3}=f_{2}+f_{1}=1+1=2 \\
& f_{4}=f_{3}+f_{2}=2+1=3 \\
& f_{5}=f_{4}+f_{3}=3+2=5
\end{aligned}
$$

Recursive Definitions (8/13)

Example 6:

Give a recursive definition of

$$
\sum_{k=0}^{n} a_{k}
$$

Recursive Definitions (8/13)

Example 6 - Answer :

Solution: The first part of the recursive definition is

$$
\sum_{k=0}^{0} a_{k}=a_{0}
$$

The second part is

$$
\sum_{k=0}^{n+1} a_{k}=\left(\sum_{k=0}^{n} a_{k}\right)+a_{n+1} .
$$

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MEIsGgZIMVYOUEtUHJImfUquLiwz

Lectures \#E: https://www.youtube.com/watch?v=E8KWDSBDSuEClist=PLxlvcMEDsGgZIMVYOCEtUHUmFUquLjwzธindex=3E
https://www.youtube.com/watch?v=xKzYNClıPZkßlist=PLx|vcMEDsGgZMMYYOEEtUHUmFUquLjwzסindex=37
https://www.youtube.com/watch?v=ST5h-IE8SLLELlist=PLxlvcMEDsgqZIMVYYOEtUHUmfUquLjwzDindex=3日
 MEDsgqZIMVYIUEtUHUmfUquLjwzסindex=4D

Thank You

Dr. Ahmed Hagag
ahagag@fri.bu.edu.eg

